If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+26x=37
We move all terms to the left:
x^2+26x-(37)=0
a = 1; b = 26; c = -37;
Δ = b2-4ac
Δ = 262-4·1·(-37)
Δ = 824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{824}=\sqrt{4*206}=\sqrt{4}*\sqrt{206}=2\sqrt{206}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{206}}{2*1}=\frac{-26-2\sqrt{206}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{206}}{2*1}=\frac{-26+2\sqrt{206}}{2} $
| 9+2a=a+2 | | G(-1)=2x+4 | | x+12+2-29+x+5=180 | | 2(x+8)=6x- | | (8-5x)6=-162 | | (-x+6)8=104 | | p+1/40=1 | | -4x+8=11x+ | | (-4+3x)-5=110 | | -4(1+8r)-6=246 | | 7+3x=5x+ | | 10=(2y+3) | | (x+1)^2+16=0 | | 15x+5=5(x+3) | | 12x+24=A | | 6x-30=6(x-5) | | 6x-30=6(x-5 | | N+4=19+2n | | x+46+3x=90 | | 4x^2+10=-90 | | 6/y+12=11 | | 7x+84=5x+36 | | 100+x=95 | | 32=1.02^x | | 5(2-3d)=15-8d | | 2x-11+6x-7=180 | | 9-3x=-5+4x. | | 2/5(5/2k)=2(-10)/5 | | 0.9x=848 | | 5/2k+1=19 | | Y=5x(1)-2 | | (5x-6)(8x+4)=0 |